Links between GPDs and TMDs

Matthias Burkardt
burkardt@nmsu.edu

New Mexico State University \& Jefferson Lab

Generalized Parton Distributions (GPDs)

- GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x=\frac{1}{2}\left(x_{i}+x_{f}\right)$ of the active quark

$$
\begin{array}{rlr}
\int d x H_{q}(x, \xi, t) & =F_{1}^{q}(t) \quad \int d x \tilde{H}_{q}(x, \xi, t)=G_{A}^{q}(t) \\
\int d x E_{q}(x, \xi, t) & =F_{2}^{q}(t) \quad \int d x \tilde{E}_{q}(x, \xi, t)=G_{P}^{q}(t)
\end{array}
$$

- x_{i} and x_{f} are the momentum fractions of the quark before and after the momentum transfer
- $2 \xi=x_{f}-x_{i}$
- GPDs can be probed in deeply virtual Compton scattering (DVCS)

Generalized Parton Distributions (GPDs)

- formal definition (unpol. quarks):

$$
\begin{aligned}
\int \frac{d x^{-}}{2 \pi} e^{i x^{-} \bar{p}^{+} x}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)|p\rangle & =H\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p) \\
+ & E\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u(p)
\end{aligned}
$$

- in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$
H_{q}(x, 0,0)=q(x) \quad \tilde{H}_{q}(x, 0,0)=\Delta q(x)
$$

- DVCS amplitude

$$
\mathcal{A}(\xi, t) \sim \int_{-1}^{1} \frac{d x}{x-\xi+i \varepsilon} G P D(x, \xi, t)
$$

p polarized in $+\hat{x}$ direction

lattice results (Hägler et al.)

GPD \longleftrightarrow SSA (Sivers)

- example: $\gamma p \rightarrow \pi X$

- u, d distributions in \perp polarized proton have left-right asymmetry in
\perp position space (T-even!); sign "determined" by $\kappa_{u} \& \kappa_{d}$
\bigcirc
attractive FSI deflects active quark towards the center of momentum
\hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$-direction into momentum asymmetry that favors $-\hat{y}$ direction
\hookrightarrow correlation between sign of κ_{q}^{p} and sign of SSA: $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$
- $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$ confirmed by Hermes data (also consistent with Compass deuteron data $f_{1 T}^{\perp u}+f_{1 T}^{\perp d} \approx 0$)

Outline

- Probabilistic interpretation of GPDs as Fourier trafos of impact parameter dependent PDFs
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $\tilde{H}\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \Delta q\left(x, \mathbf{b}_{\perp}\right)$

- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ distortion of PDFs when the target is \perp polarized
- Chromodynamik lensing and \perp SSAs

- Transverse force on quarks in DIS
- Summary

Quark-Gluon Correlations (Introduction)

- (longitudinally) polarized polarized DIS at leading twist \longrightarrow 'polarized quark distribution' $g_{1}^{q}(x)=q^{\uparrow}(x)+\bar{q}^{\uparrow}(x)-q_{\downarrow}(x)-\bar{q}_{\downarrow}(x)$
- $\frac{1}{Q^{2}}$-corrections to X -section involve 'higher-twist' distribution functions, such as $g_{2}(x)$

$$
\sigma_{L L} \propto g_{1}-\frac{2 M x}{\nu} g_{2}
$$

- $g_{2}(x)$ involves quark-gluon correlations and does not have a parton interpretation as difference between number densities
- for \perp polarized target, g_{1} and g_{2} contribute equally to $\sigma_{L T}$

$$
\sigma_{L T} \propto g_{T} \equiv g_{1}+g_{2}
$$

\hookrightarrow 'clean' separation between higher order corrections to leading twist $\left(g_{1}\right)$ and higher twist effects $\left(g_{2}\right)$

- what can one learn from g_{2} ?

Quark-Gluon Correlations (QCD analysis)

- $\int d x x^{2} g_{T}(x) \propto\langle P S| \bar{q} \gamma^{\perp} \gamma_{5} D^{+} D^{+} \psi|P S\rangle$.
- use Lorentz invariance and
- equations of motion, e.g. $\gamma_{\mu} D^{\mu} q|P S\rangle=0$
\rightsquigarrow term involving $\int d x x^{2} g_{1}(x)$ and term involving
- $\langle P S| \bar{q} \gamma^{+} \gamma_{5}\left[D^{\perp}, D^{+}\right] q|P S\rangle=\langle P S| \bar{q} \gamma^{+} \gamma_{5} g G^{+\perp} q|P S\rangle$
- more generally: $g_{2}(x)=g_{2}^{W W}(x)+\bar{g}_{2}(x)$, with
$g_{2}^{W W}(x) \equiv-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y)$
- $\bar{g}_{2}(x)$ involves quark-gluon correlations, e.g.
$\int d x x^{2} \bar{g}_{2}(x)=\frac{1}{3} d_{2}=\frac{1}{6 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle$
- $\sqrt{2} G^{+y} \equiv G^{0 y}+G^{z y}=-E^{y}+B^{x}$
- sometimes called color-electric and magnetic polarizabilities $2 M^{2} \vec{S} \chi_{E}=\langle P, S| \vec{j}_{a} \times \vec{E}_{a}|P, S\rangle \& 2 M^{2} \vec{S} \chi_{B}=\langle P, S| j_{a}^{0} \vec{B}_{a}|P, S\rangle$
with $d_{2}=\frac{1}{4}\left(\chi_{E}+2 \chi_{M}\right)$ - but these names are misleading!

Quark-Gluon Correlations (Interpretation)

- $\bar{g}_{2}(x)$ involves quark-gluon correlations, e.g.

$$
\int d x x^{2} \bar{g}_{2}(x)=\frac{1}{3} d_{2}=\frac{1}{6 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

- QED: $\bar{q}(0) e F^{+y}(0) \gamma^{+} q(0)$ correlator between quark density $\bar{q} \gamma^{+} q$ and (\hat{y}-component of the) Lorentz-force
$F^{y}=e[\vec{E}+\vec{v} \times \vec{B}]^{y}=e\left(E^{y}-B^{x}\right)=-e\left(F^{0 y}+F^{z y}\right)=-e \sqrt{2} F^{+y}$.
for charged paricle moving with $\vec{v}=(0,0,-1)$ in the $-\hat{z}$ direction
\hookrightarrow matrix element of $\bar{q}(0) e F^{+y}(0) \gamma^{+} q(0)$ yields γ^{+}density (density relevant for DIS in Bj limit!) weighted with the Lorentz force that a charged particle with $\vec{v}=(0,0,-1)$ would experience at that point
$\hookrightarrow d_{2}$ a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

$$
\left.\left\langle F^{y}(0)\right\rangle=-M^{2} d_{2} \quad \text { (rest frame; } S^{x}=1\right)
$$

Quark-Gluon Correlations (Interpretation)

- Interpretation of d_{2} with the transverse FSI force in DIS also consistent with $\left\langle k_{\perp}^{y}\right\rangle \equiv \int_{0}^{1} d x \int \mathrm{~d}^{2} k_{\perp} k_{\perp}^{2} f_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)$ in SIDIS (Qiu, Sterman)

$$
\left\langle k_{\perp}^{y}\right\rangle=-\frac{1}{2 p^{+}}\langle P, S| \bar{q}(0) \int_{0}^{\infty} d x^{-} g G^{+y}\left(x^{-}\right) \gamma^{+} q(0)|P, S\rangle
$$

semi-classical interpretation: average k_{\perp} in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity

- matrix element defining d_{2} same as the integrand (for $x^{-}=0$) in the QS-integral:
- $\left\langle k_{\perp}^{y}\right\rangle=\int_{0}^{\infty} d t F^{y}(t) \quad$ (use $\left.\mathrm{d} x^{-}=\sqrt{2} \mathrm{~d} t\right)$
\hookrightarrow first integration point $\longrightarrow F^{y}(0)$
\hookrightarrow (transverse) force at the begin of the trajectory, i.e. at the moment after absorbing the virtual photon

Quark-Gluon Correlations (Interpretation)

- x^{2}-moment of twist-4 polarized PDF $g_{3}(x)$

$$
\int d x x^{2} g_{3}(x) \rightsquigarrow\langle P, S| \bar{q}(0) g \tilde{G}^{\mu \nu}(0) \gamma_{\nu} q(0)|P, S\rangle \sim f_{2}
$$

\hookrightarrow different linear combination $f_{2}=\chi_{E}-\chi_{B}$ of χ_{E} and χ_{M}
\hookrightarrow combine with $d_{2} \Rightarrow$ disentangle electric and magnetic force

- What should one expect (sign)?
- $\kappa_{q}^{p} \longrightarrow$ signs of deformation (u / d quarks in $\pm \hat{y}$ direction for proton polarized in $+\hat{x}$ direction \longrightarrow expect force in $\mp \hat{y}$
$\hookrightarrow d_{2}$ positive/negative for u / d quarks in proton
- large $N_{C}: d_{2}^{u / p}=-d_{2}^{d / p}$
- consistent with $f_{1 T}^{\perp u}+f_{1 T}^{\perp d} \approx 0$
- lattice (Göckeler et al.): $d_{2}^{u} \approx 0.010$ and $d_{2}^{d} \approx-0.0056$
$\hookrightarrow\left(M^{2} \approx 5 \frac{\mathrm{GeV}}{f m} \quad\left\langle F_{u}^{y}(0)\right\rangle \approx-50 \frac{\mathrm{MeV}}{f m} \quad\left\langle F_{d}^{y}(0)\right\rangle \approx 28 \frac{\mathrm{MeV}}{f m}\right.$
- x^{2}-moment of chirally odd twist-3 PDF $e(x) \longrightarrow$ transverse force on transversly polarized quark in unpolarized target (\leftrightarrow Boer-Mulders h_{1}^{\perp})

Quark-Gluon Correlations (chirally odd)

- \perp momentum for quark polarized in $+\hat{x}$-direction (unpolarized target)

$$
\left\langle k_{\perp}^{y}\right\rangle=\frac{g}{2 p^{+}}\langle P, S| \bar{q}(0) \int_{0}^{\infty} d x^{-} G^{+y}\left(x^{-}\right) \sigma^{+y} q(0)|P, S\rangle
$$

- compare: interaction-dependent twist-3 piece of $e(x)$

$$
\int d x x^{2} e^{i n t}(x) \equiv e_{2}=\frac{g}{4 M P^{+^{2}}}\langle P, S| \bar{q}(0) G^{+y}(0) \sigma^{+y} q(0)|P, S\rangle
$$

$\hookrightarrow\left\langle F^{y}\right\rangle=M^{2} e_{2}$
\hookrightarrow (chromodynamic lensing) $e_{2}<0$

Summary

- GPDs $\stackrel{F T}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ deformation of PDFs for \perp polarized target
$\hookrightarrow \kappa^{q / p} \Rightarrow$ sign of deformation
\hookrightarrow attractive $\mathrm{FSI} \Rightarrow f_{1 T}^{\perp u}<0 \& f_{1 T}^{\perp d}>0$
- Interpretation of $M^{2} d_{2} \equiv 3 M^{2} \int d x x^{2} \bar{g}_{2}(x)$ as \perp force on active quark in DIS in the instant after being struck by the virtual photon

$$
\left\langle F^{y}(0)\right\rangle=-M^{2} d_{2} \quad\left(\text { rest frame; } S^{x}=1\right)
$$

- In combination with measurements of f_{2}
- color-electric/magnetic force $\frac{M^{2}}{4} \chi_{E}$ and $\frac{M^{2}}{2} \chi_{M}$
- $\kappa^{q / p} \Rightarrow \perp$ deformation $\Rightarrow d_{2}^{u / p}>0 \& d_{2}^{d / p}<0$ (attractive FSI)
- combine measurement of d_{2} with that of $f_{1 T}^{\perp} \Rightarrow$ range of $\mathbf{F S I}$
- x^{2}-moment of chirally odd twist-3 PDF $e(x) \longrightarrow$ transverse force on transversly polarized quark in unpolarized target (\leftrightarrow Boer-Mulders $h_{\hat{1}^{\perp}}^{\perp}$)

Summary

- distribution of \perp polarized quarks in unpol. target described by chirally odd GPD $\bar{E}_{T}^{q}=2 \bar{H}_{T}^{q}+E_{T}^{q}$
\hookrightarrow origin: correlation between orbital motion and spin of the quarks
\hookrightarrow attractive $\mathrm{FSI} \Rightarrow$ measurement of h_{1}^{\perp} (DY,SIDIS) provides information on \bar{E}_{T}^{q} and hence on spin-orbit correlations
- expect:

$$
h_{1}^{\perp, q}<0 \quad\left|h_{1}^{\perp, q}\right|>\left|f_{1 T}^{q}\right|
$$

- x^{2}-moment of chirally odd twist-3 PDF $e(x) \longrightarrow$ transverse force on transversly polarized quark in unpolarized target (\longrightarrow Boer-Mulders)

What is Orbital Angular Momentum?

- Ji decomposition
- Jaffe decomposition
- recent lattice results (Ji decomposition)
- model/QED illustrations for Ji v. Jaffe

The nucleon spin pizza(s)

Ji

'pizza tre stagioni'

Jaffe \& Manohar

'pizza quattro stagioni'

- only $\frac{1}{2} \Delta \Sigma \equiv \frac{1}{2} \sum_{q} \Delta q$ common to both decompositions!

Angular Momentum Operator

- angular momentum tensor $M^{\mu \nu \rho}=x^{\mu} T^{\nu \rho}-x^{\nu} T^{\mu \rho}$
- $\partial_{\rho} M^{\mu \nu \rho}=0$
$\hookrightarrow \tilde{J}^{i}=\frac{1}{2} \varepsilon^{i j k} \int d^{3} r M^{j k 0}$ conserved

$$
\frac{d}{d t} \tilde{J}^{i}=\frac{1}{2} \varepsilon^{i j k} \int d^{3} x \partial_{0} M^{j k 0}=\frac{1}{2} \varepsilon^{i j k} \int d^{3} x \partial_{l} M^{j k l}=0
$$

- $M^{\mu \nu \rho}$ contains time derivatives (since $T^{\mu \nu}$ does)
- use eq. of motion to get rid of these (as in $T^{0 i}$)
- integrate total derivatives appearing in $T^{0 i}$ by parts
- yields terms where derivative acts on x^{i} which then ‘disappears’
$\hookrightarrow J^{i}$ usally contains both
- 'Extrinsic' terms, which have the structure ' $\vec{x} \times$ Operator', and can be identified with 'OAM'
- 'Intrinsic' terms, where the factor $\vec{x} \times$ does not appear, and can be identified with 'spin'

Angular Momentum in QCD (Ji)

- following this general procedure, one finds in QCD

$$
\vec{J}=\int d^{3} x\left[\psi^{\dagger} \vec{\Sigma} \psi+\psi^{\dagger} \vec{x} \times(i \vec{\partial}-g \vec{A}) \psi+\vec{x} \times(\vec{E} \times \vec{B})\right]
$$

with $\Sigma^{i}=\frac{i}{2} \varepsilon^{i j k} \gamma^{j} \gamma^{k}$

- Ji does not integrate gluon term by parts, nor identify gluon spin/OAM separately
- Ji-decomposition valid for all three components of \vec{J}, but usually only applied to \hat{z} component, where the quark spin term has a partonic interpretation
(+) all three terms manifestly gauge invariant
(+) DVCS can be used to probe $\vec{J}_{q}=\vec{S}_{q}+\vec{L}_{q}$
(-) quark OAM contains interactions
(-) only quark spin has partonic interpretation as a single particle density

Ji-decomposition

- Ji (1997)

$$
\frac{1}{2}=\sum_{q} J_{q}+J_{g}=\sum_{q}\left(\frac{1}{2} \Delta q+L_{q}\right)+J_{g}
$$

with $\left(P^{\mu}=(M, 0,0,1), S^{\mu}=(0,0,0,1)\right)$

$$
\begin{aligned}
\frac{1}{2} \Delta q & =\frac{1}{2} \int d^{3} x\langle P, S| q^{\dagger}(\vec{x}) \Sigma^{3} q(\vec{x})|P, S\rangle \quad \Sigma^{3}=i \gamma^{1} \gamma^{2} \\
L_{q} & =\int d^{3} x\langle P, S| q^{\dagger}(\vec{x})(\vec{x} \times i \vec{D})^{3} q(\vec{x})|P, S\rangle \\
J_{g} & =\int d^{3} x\langle P, S|[\vec{x} \times(\vec{E} \times \vec{B})]^{3}|P, S\rangle
\end{aligned}
$$

- $i \vec{D}=i \vec{\partial}-g \vec{A}$

Ji-decomposition

- $\vec{J}=\sum_{q} \frac{1}{2} q^{\dagger} \vec{\Sigma} q+q^{\dagger}(\vec{r} \times i \vec{D}) q+\vec{r} \times(\vec{E} \times \vec{B})$
applies to each vector component of nucleon angular momentum, but Ji-decomposition usually applied only to \hat{z} component where at least quark spin has parton interpretation as difference between number densities
- Δq from polarized DIS
- $J_{q}=\frac{1}{2} \Delta q+L_{q}$ from exp/lattice (GPDs)
- L_{q} in principle independently defined as matrix elements of $q^{\dagger}(\vec{r} \times i \vec{D}) q$, but in practice easier by subtraction $L_{q}=J_{q}-\frac{1}{2} \Delta q$
- J_{g} in principle accessible through gluon GPDs, but in practice easier by subtraction $J_{g}=\frac{1}{2}-J_{q}$
- further decomposition of J_{g} into intrinsic (spin) and extrinsic (OAM) that is local and manifestly gauge invariant has not been found

L_{q} for proton from Ji-relation (lattice)

- lattice QCD \Rightarrow moments of GPDs (LHPC; QCDSF)
\hookrightarrow insert in Ji-relation

$$
\left\langle J_{q}^{i}\right\rangle=S^{i} \int d x\left[H_{q}(x, 0)+E_{q}(x, 0)\right] x .
$$

$\hookrightarrow L_{q}^{z}=J_{q}^{z}-\frac{1}{2} \Delta q$

- L_{u}, L_{d} both large!
- present calcs. show $L_{u}+L_{d} \approx 0$, but
- disconnected diagrams ..?
- m_{π}^{2} extrapolation
- parton interpret. of $L_{q} \cdots$

Angular Momentum in QCD (Jaffe \& Manohar)

- define OAM on a light-like hypesurface rather than a space-like hypersurface

$$
\tilde{J}^{3}=\int d^{2} x_{\perp} \int d x^{-} M^{12+}
$$

where $x^{-}=\frac{1}{\sqrt{2}}\left(x^{0}-x^{-}\right)$and $M^{12+}=\frac{1}{\sqrt{2}}\left(M^{120}+M^{123}\right)$

- Since $\partial_{\mu} M^{12 \mu}=0$

$$
\int d^{2} \mathbf{x}_{\perp} \int d x^{-} M^{12+}=\int d^{2} \mathbf{x}_{\perp} \int d x^{3} M^{120}
$$

(compare electrodynamics: $\vec{\nabla} \cdot \vec{B}=0 \quad \Rightarrow \quad$ flux in = flux out)

- use eqs. of motion to get rid of 'time' (∂_{+}derivatives) \& integrate by parts whenever a total derivative appears in the T^{i+} part of M^{12+}

Jaffe/Manohar decomposition

- in light-cone framework \& light-cone gauge $A^{+}=0$ one finds for $J^{z}=\int d x^{-} d^{2} \mathbf{r}_{\perp} M^{+x y}$

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\sum_{q} \mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}
$$

where $\left(\gamma^{+}=\gamma^{0}+\gamma^{z}\right)$

$$
\begin{aligned}
\mathcal{L}_{q} & =\int d^{3} r\langle P, S| \bar{q}(\vec{r}) \gamma^{+}(\vec{r} \times i \vec{\partial})^{z} q(\vec{r})|P, S\rangle \\
\Delta G & =\varepsilon^{+-i j} \int d^{3} r\langle P, S| \operatorname{Tr} F^{+i} A^{j}|P, S\rangle \\
\mathcal{L}_{g} & =2 \int d^{3} r\langle P, S| \operatorname{Tr} F^{+j}(\vec{x} \times i \vec{\partial})^{z} A^{j}|P, S\rangle
\end{aligned}
$$

Jaffe/Manohar decomposition

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\sum_{q} \mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}
$$

- $\Delta \Sigma=\sum_{q} \Delta q$ from polarized DIS (or lattice)
- ΔG from $\vec{p} \stackrel{\rightharpoonup}{p}$ or polarized DIS (evolution)
$\hookrightarrow \Delta G$ gauge invariant, but local operator only in light-cone gauge
- $\int d x x^{n} \Delta G(x)$ for $n \geq 1$ can be described by manifestly gauge inv. local op. (\longrightarrow lattice)
- $\mathcal{L}_{q}, \mathcal{L}_{g}$ independently defined, but
- no exp. identified to access them
- not accessible on lattice, since nonlocal except when $A^{+}=0$
- parton net OAM $\mathcal{L}=\mathcal{L}_{g}+\sum_{q} \mathcal{L}_{q}$ by subtr. $\mathcal{L}=\frac{1}{2}-\frac{1}{2} \Delta \Sigma-\Delta G$
- in general, $\mathcal{L}_{q} \neq L_{q} \quad \mathcal{L}_{g}+\Delta G \neq J_{g}$
- makes no sense to 'mix' Ji and JM decompositions, e.g. $J_{g}-\Delta G$ has no fundamental connection to OAM
- L_{q} matrix element of

$$
q^{\dagger}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q=\bar{q} \gamma^{0}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q
$$

- \mathcal{L}_{q}^{z} matrix element of $\left(\gamma^{+}=\gamma^{0}+\gamma^{z}\right)$

$$
\left.\bar{q} \gamma^{+}[\vec{r} \times i \vec{\partial}]^{z} q\right|_{A^{+}=0}
$$

- For nucleon at rest, matrix element of L_{q} same as that of $\bar{q} \gamma^{+}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q$
\hookrightarrow even in light-cone gauge, L_{q}^{z} and \mathcal{L}_{q}^{z} still differ by matrix element of $\left.q^{\dagger}(\vec{r} \times g \vec{A})^{z} q\right|_{A^{+}=0}=\left.q^{\dagger}\left(x g A^{y}-y g A^{x}\right) q\right|_{A^{+}=0}$

Summary part 1:

- Ji: $J^{z}=\frac{1}{2} \Delta \Sigma+\sum_{q} L_{q}+J_{g}$
- Jaffe: $J^{z}=\frac{1}{2} \Delta \Sigma+\sum_{q} \mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}$
- ΔG can be defined without reference to gauge (and hence gauge invariantly) as the quantity that enters the evolution equations and/or $\vec{p} \stackrel{\rightharpoonup}{p}$
\hookrightarrow represented by simple (i.e. local) operator only in LC gauge and corresponds to the operator that one would naturally identify with 'spin' only in that gauge
- in general $L_{q} \neq \mathcal{L}_{q}$ or $J_{g} \neq \Delta G+\mathcal{L}_{g}$, but
- how significant is the difference between L_{q} and \mathcal{L}_{q}, etc. ?

OAM in scalar diquark model

[M.B. + Hikmat Budhathoki Chhetri (BC), PRD 79, 071501 (2009)]

- toy model for nucleon where nucleon (mass M) splits into quark (mass m) and scalar 'diquark' (mass λ)
\hookrightarrow light-cone wave function for quark-diquark Fock component

$$
\psi_{+\frac{1}{2}}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=\left(M+\frac{m}{x}\right) \phi \quad \psi_{-\frac{1}{2}}^{\uparrow}=-\frac{k^{1}+i k^{2}}{x} \phi
$$

with $\phi=\frac{c / \sqrt{1-x}}{M^{2}-\frac{\mathbf{k}_{1}^{2}+m^{2}}{x}-\frac{\mathbf{k}_{1}^{2}+\lambda^{2}}{1-x}}$.

- quark OAM according to JM: $\mathcal{L}_{q}=\int_{0}^{1} d x \int \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}}(1-x)\left|\psi_{-\frac{1}{2}}^{\uparrow}\right|^{2}$
- quark OAM according to Ji: $L_{q}=\frac{1}{2} \int_{0}^{1} d x x[q(x)+E(x, 0,0)]-\frac{1}{2} \Delta q$
\rightsquigarrow (using Lorentz inv. regularization, such as Pauli Villars subtraction) both give identical result, i.e. $L_{q}=\mathcal{L}_{q}$
- not surprising since scalar diquark model is not a gauge theory

OAM in scalar diquark model

- But, even though $L_{q}=\mathcal{L}_{q}$ in this non-gauge theory

$$
\mathcal{L}_{q}(x) \equiv \int \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}}(1-x)\left|\psi_{-\frac{1}{2}}^{\uparrow}\right|^{2} \neq \frac{1}{2}\{x[q(x)+E(x, 0,0)]-\Delta q(x)\} \equiv L_{q}(x)
$$

\hookrightarrow 'unintegrated Ji-relation' does not yield x-distribution of OAM

OAM in QED

- light-cone wave function in er Fock component

$$
\begin{aligned}
\Psi_{+\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right) & =\sqrt{2} \frac{k^{1}-i k^{2}}{x(1-x)} \phi & \Psi_{+\frac{1}{2}-1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=-\sqrt{2} \frac{k^{1}+i k}{1-x} \\
\Psi_{-\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right) & =\sqrt{2}\left(\frac{m}{x}-m\right) \phi & \Psi_{-\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=0
\end{aligned}
$$

- OAM of e^{-}according to Jaffe/Manohar

$$
\mathcal{L}_{e}=\int_{0}^{1} d x \int d^{2} \mathbf{k}_{\perp}\left[(1-x)\left|\Psi_{+\frac{1}{2}-1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)\right|^{2}-\left|\Psi_{+\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)\right|^{2}\right]
$$

- e^{-}OAM according to Ji $L_{e}=\frac{1}{2} \int_{0}^{1} d x x[q(x)+E(x, 0,0)]-\frac{1}{2} \Delta q$
$\rightsquigarrow \mathcal{L}_{e}=L_{e}+\frac{\alpha}{4 \pi} \neq L_{e}$
- Likewise, computing J_{γ} from photon GPD, and $\Delta \gamma$ and \mathcal{L}_{γ} from light-cone wave functions and defining $\hat{L}_{\gamma} \equiv J_{\gamma}-\Delta \gamma$ yields $\hat{L}_{\gamma}=\mathcal{L}_{\gamma}+\frac{\alpha}{4 \pi} \neq \mathcal{L}_{\gamma}$
- $\frac{\alpha}{4 \pi}$ appears to be small, but here \mathcal{L}_{e}, L_{e} are all of $\mathcal{O}\left(\frac{\alpha}{\pi}\right)$

OAM in QCD

\hookrightarrow 1-Ioop QCD: $\mathcal{L}_{q}-L_{q}=\frac{\alpha_{s}}{3 \pi}$

- recall (lattice QCD): $L_{u} \approx-.15 ; L_{d} \approx+.15$
- QCD evolution yields negative correction to L_{u} and positive correction to L_{d}
\hookrightarrow evolution suggested (A.W.Thomas) to explain apparent discrepancy between quark models (low Q^{2}) and lattice results ($Q^{2} \sim 4 \mathrm{GeV}^{2}$)
- above result suggests that $\mathcal{L}_{u}>L_{u}$ and $\mathcal{L}_{d}>L_{d}$
- additional contribution (with same sign) from vector potential due to spectators (MB, to be published)
\hookrightarrow possible that lattice result consistent with $\mathcal{L}_{u}>\mathcal{L}_{d}$
- inclusive $\vec{e} \overleftarrow{p} / \vec{p} \overleftarrow{p}$ provide access to
- quark spin $\frac{1}{2} \Delta q$

- gluon spin ΔG
- parton grand total OAM $\mathcal{L} \equiv \mathcal{L}_{g}+\sum_{q} \mathcal{L}_{q}=\frac{1}{2}-\Delta G-\sum_{q} \Delta q$
- DVCS \& polarized DIS and/or lattice provide access to
- quark spin $\frac{1}{2} \Delta q$
- $J_{q} \& L_{q}=J_{q}-\frac{1}{2} \Delta q$
- $J_{g}=\frac{1}{2}-\sum_{q} J_{q}$
- $J_{g}-\Delta G$ does not yield gluon OAM \mathcal{L}_{g}
- $L_{q}-\mathcal{L}_{q}=\mathcal{O}\left(0.1 * \alpha_{s}\right)$ for $\mathrm{O}\left(\alpha_{s}\right)$ dressed quark

Announcement:

- workshop on Orbital Angular Momentum of Partons in Hadrons
- ECT* 9-13 November 2009
- organizers: M.B. \& Gunar Schnell
- confirmed participants: M.Anselmino, H.Avakian, A.Bacchetta, L.Bland, D.Fields, L.Gamberg, G.Goldstein, M.Grosse-Perdekamp, P.Hägler, X.Ji, R.Kaiser, E.Leader, S.Liutti, N.Makins, A.Miller, D.Müller, P.Mulders, A.Schäfer, G.Schierholz, O.Teryaev, W.Vogelsang, F.Yuan

